首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   35篇
工业技术   425篇
  2024年   1篇
  2023年   4篇
  2022年   16篇
  2021年   16篇
  2020年   20篇
  2019年   23篇
  2018年   38篇
  2017年   22篇
  2016年   26篇
  2015年   10篇
  2014年   22篇
  2013年   37篇
  2012年   15篇
  2011年   19篇
  2010年   13篇
  2009年   26篇
  2008年   18篇
  2007年   16篇
  2006年   12篇
  2005年   10篇
  2004年   6篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
  1970年   3篇
  1956年   1篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
1.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
2.
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.  相似文献   
3.
Anup Bhat B  Harish SV  Geetha M 《ETRI Journal》2021,43(6):1024-1037
Mining high utility itemsets (HUIs) from transaction databases considers such factors as the unit profit and quantity of purchased items. Two-phase tree-based algorithms transform a database into compressed tree structures and generate candidate patterns through a recursive pattern-growth procedure. This procedure requires a lot of memory and time to construct conditional pattern trees. To address this issue, this study employs two compressed tree structures, namely, Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus promote fast utility computation. Furthermore, the study presents an algorithm called single-phase utility computation (SPUC) that leverages these two tree structures to mine HUIs in a single phase by incorporating novel pruning strategies. Experiments conducted on both real and synthetic datasets demonstrate the superior performance of SPUC compared with IHUP, UP-Growth, and UP-Growth+ algorithms.  相似文献   
4.
Synthesis of electroluminescent ZnS:Cu, Br phosphor by a number of routes has been presented along with their brightness-voltage, brightness-frequency, brightness-waveform and spectral energy distribution studies. The sample fired in N2 atmosphere with aluminum and bromine shows predominantly green emission with a peak around 530 nm whereas the sample prepared under H2S and HBr shows the broadest emission spectrum with multiple peaks. These peaks may arise out of different possible bands of copper, self-activated luminescence of ZnS and association of copper with some of the donor levels formed because of the higher reactivity of HBr. All the samples have been found to obey the relation B=B0 exp.(−b/V0.5) which has been discussed using bipolar tunnel emission model. The frequency variation of brightness is linear. Samples containing bromine show multiple secondary peaks indicating that bromine helps in formation of multiple shallow traps.  相似文献   
5.
6.
Yang  Zaoli  Garg  Harish  Li  Jinqiu  Srivastava  Gautam  Cao  Zehong 《Neural computing & applications》2021,33(17):10771-10786
Neural Computing and Applications - Q-rung orthopair fuzzy (q-ROF) set is one of the powerful tools for handling the uncertain multi-criteria decision-making (MCDM) problems, various MCDM methods...  相似文献   
7.
Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient’s immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.  相似文献   
8.
The main objective of this paper is to solve the bi-objective reliability redundancy allocation problem for series-parallel system where reliability of the system and the corresponding designing cost are considered as two different objectives. In their formulation, reliability of each component is considered as a triangular fuzzy number. In order to solve the problem, developed fuzzy model is converted to a crisp model by using expected values of fuzzy numbers and taking into account the preference of decision maker regarding cost and reliability goals. Finally the obtained crisp optimization problem has been solved with particle swarm optimization (PSO) and compared their results with genetic algorithm (GA). Examples are shown to illustrate the method. Finally statistical simulation has been performed for supremacy the approach.  相似文献   
9.
Approximately 1.5 μm thick CrN and CrAlN coatings were deposited on silicon and mild steel substrates by reactive direct current (DC) magnetron sputtering. The structural and mechanical properties of the coatings were characterized using X-ray diffraction (XRD) and nanoindentation techniques, respectively. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy (XPS). The surface morphology of the coatings was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD data showed that the CrN and CrAlN coatings exhibited B1 NaCl structure. Nanoindentation measurements showed that as-deposited CrN and CrAlN coatings exhibited a hardness of 18 and 33 GPa, respectively. Results of the surface analysis of the as-deposited coatings using SEM and AFM showed a more compact and dense microstructure for CrAlN coatings. The thermal stability of the coatings was studied by heating the coatings in air from 400 to 900 °C. The structural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data revealed that CrN coatings got oxidized at 600 °C, whereas in the case of CrAlN coatings, no detectable oxides were formed even at 800 °C. After annealing up to 700 °C, the CrN coatings displayed a hardness of only about 7.5 GPa as compared to CrAlN coatings, which exhibited hardness as high as 22.5 GPa. The potentiodynamic polarization measurements in 3.5% NaCl solution indicated that the CrAlN coatings exhibited superior corrosion resistance as compared to CrN coatings.  相似文献   
10.
Design of industrial annealing cycles requires recrystallization and grain growth studies, which are typically carried out under isothermal laboratory condition. The kinetics coefficients of these phase transformations are obtained from such studies, which are subsequently used in designing the industrial nonisothermal cycles using the additivity principles. However, the strong heating rate effects on the grain growth kinetics necessitate such kinetics studies using industrial thermal profiles. In the present work, the hot and cold spot cycles of an industrial batch annealing cycle for AIK grade steel have been simulated in a programmable laboratory furnace. Subsequently, the effect of annealing temperature, soaking time, and heating rate on the microstructural features, such as grain size distribution, grain shape anisotropy, and grain orientation, have been investigated through extensive quantitative microscopy. The implications of these results on the design of industrial batch annealing cycles have been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号